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Calibrated linear equivalent models of civil structures are often used for response predic-
tion and performance assessment. However, these models are only valid for a narrow range
of excitation level for which these models are calibrated. In this paper a hierarchical
Bayesian model updating approach is proposed for model calibration and response predic-
tion of dynamic structural systems in a wide range of excitation levels where the linear
equivalent stiffness of different structural components are updated as functions of excita-
tion amplitude. The proposed approach is implemented on a two-story reinforced concrete
building with masonry infills. The building, located in El Centro California, has suffered sev-
ere damage during past earthquakes. Ambient and forced vibration tests were performed
on the building using an eccentric mass shaker, and its dynamic response was measured
using an array of accelerometers. The modal parameters of the structure are identified
under different amplitudes of vibration and the natural frequencies exhibit significant
decrease at higher vibration levels. The hierarchical Bayesian model updating approach
is used to estimate the probability distribution of effective stiffness of considered structural
components which is characterized by the stiffness mean and covariance as hyperparam-
eters, as well as modeling errors. To account for the effect of vibration amplitude, the effec-
tive stiffness mean is considered as a function of vibration level. A two-step sampling
approach is proposed to evaluate the joint posterior probability distribution of updating
parameters. The calibrated model is then used to predict time history response of the
building under forced vibration which is compared with measured data. The good agree-
ment observed from this comparison verifies the calibrated model and the proposed
approach to account for the excitation level in updating process.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Model updating, also referred to as model inversion or model calibration, has been widely used for structural health or
performance assessment, and response prediction of dynamic systems [1,2]. In the application of model updating, model
parameters are updated to minimize an objective function which is the misfit between model-predicted and measured data
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features. Finite element (FE) model updating has the advantage of integrating field measurements with a physics-based FE
model to provide an accurate representation of the actual structure system. The calibrated model can then be used for
response prediction and/or damage detection. Applications of model updating for assessment of complex real-world civil
structures include mainly bridges [3–11] and buildings [12–16]. Teughels and Roeck [6] performed damage identification
of a prestressed concrete bridge through model updating. Reynders et al. [9] applied model updating for damage identifica-
tion of a bridge using modal strains measured directly by optical fiber strain sensors. Jaishi et al. [7] presented FE model
updating of a concrete-filled tubular arch bridge using modal flexibility. Song et al. [15] implemented FE model updating
for damage identification of the two-story RC building (the same building considered in this study) and compared the results
with lidar measurement. Bassoli et al. [16] performed model updating of a damaged masonry tower using ambient vibration
measurements.

The deterministic applications of model updating, however, cannot justify the uncertainty of updating results. The model
updating results depend on a variety of factors such as the completeness and accuracy of measurements, the number of sen-
sors used, and the modeling assumptions (i.e., modeling errors). Among these factors, modeling errors provide the biggest
challenge in utilizing calibrated models for structural response prediction, especially outside their calibration domain
[13,14,17]. Bayesian model updating approaches have been used to account for different sources of modeling errors when
dealing with real-world structural systems [18–20]. The numerical applications of the Bayesian approach to the IASC-
ASCE benchmark are reported in these two studies [21,22]. Muto and Beck [23] employed Bayesian model updating and
model class selection for a numerical 3-story shear building. Ntotsios et al. [24] performed Bayesian damage identification
of a laboratory small-scaled bridge section. Lam et al. [25] applied a Bayesian approach for model updating and damage
detection of a 2-story steel frame in the laboratory. Behmanesh and Moaveni [26] implemented Bayesian model updating
to identify simulated damage (added concrete block on the deck) on a footbridge, and considered the effect of temperature
and excitation amplitude using hierarchical Bayesian approach [27].

Although the Bayesian model updating applications quantify the uncertainty of updating results, the obtained uncertain-
ties reflect only the estimation errors and become negligible (go to zero) with increasing amount of (even noisy) data. Such
approaches cannot quantify the variability of effective modeling parameter due to ambient and environmental conditions
such as changing temperature, humidity, wind, or traffic loading. In these studies [13,14], the authors have reported that
the accuracy of model predictions would vary significantly with excitation amplitude for linear dynamic models. Structures
are assumed to respond as quasi-linear systems with their dynamic parameters evolving as a function of structural damage
and excitation amplitude. With increasing levels of excitation, the level of nonlinearity in the structural response increases,
even at relatively low amplitude excitations. Therefore, the assumption that the structure behaves as a quasi-linear dynamic
system is violated and a linear dynamic model (e.g., modal model) is not strictly able to represent the structure accurately at
different levels of excitation. A nonlinear model updating approach could be potentially applied to solve this issue as
reported in Asgarieh et al. [28], but this requires measurements at full range of nonlinear response and complex material
models capable of representing actual nonlinear behavior.

In this study, we propose a hierarchical Bayesian model updating approach where the effective stiffness parameters are
assumed to be functions of excitation amplitude. The approach is implemented for model updating and response prediction
of a two-story reinforced concrete (RC) building which was tested using an eccentric mass shaker. The hierarchical Bayesian
approach [29] is implemented to estimate the effective stiffness of the considered structural components and parameters
which characterize their probability distributions including the mean and covariance as hyperparameters, as well as mod-
eling errors. To account for the effect of vibration amplitude, the stiffness mean is considered as a function of vibration level.
The joint posterior probability distribution of all updating parameters (effective stiffness, stiffness mean which is a function
of vibration level, stiffness covariance, and modeling errors) is derived from likelihood functions and prior probability dis-
tributions. A two-step sampling approach is proposed to evaluate the posterior distribution by computing the most probable
values of parameters at the first step, and then using Gibbs sampler to generate parameter samples. The calibrated model is
shown to be capable of capturing the decreasing trend of identified natural frequencies and predicting the building response
to shaker excitation accurately.
2. Dynamic test of the structure

The considered structure is a two-story RC building with masonry walls, located in El Centro, California. It consists of RC
frames in north–south direction and peripheral masonry infills on both stories, with a small wooden extension on the south
side. The building was severely damaged by four significant earthquakes and has been abandoned, as it is considered not
economy-efficient for reparation and reuse. Fig. 1 shows the north-east and south-west views of the structure. Dominant
shear cracks were observed in the masonry walls and concrete columns of the second story. This building provided a unique
opportunity to perform a set of dynamic tests under significant excitation levels on a real-world RC structure. Ambient and
forced vibration tests were performed and the structural response was measured through an array of accelerometers in the
building. A total of 15 tri-axial accelerometers were installed with 5 accelerometers on each floor (1st floor, 2nd floor and
roof). The layout of accelerometers on each floor is similar, with the 2nd floor layout demonstrated in Fig. 2(a). The acronyms
NW, NE, SW, SE and CC refer to north-west, north-east, south-west, south-east and center. The positive X, Y and Z axis of the
tri-axial accelerometer are pointing to the east, north and upward direction, respectively. In this study, only the horizontal



Fig. 1. (a) North-east view and (b) south-west view of the structure [30].

Fig. 2. (a) Layout of accelerometers on the 2nd floor; (b) The eccentric mass shaker [30].
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components (X and Y) of measured accelerations are used in system identification, resulting in a total of 30 channels. The
forced vibration tests were done using a uniaxial eccentric mass shaker located at the north-west corner of the 2nd floor,
as depicted in Fig. 2. Multiple different forced excitations were performed on the building, with the excitation either in sine
sweep or sine step form and the shaking direction either in north-south or east-west direction. In total, 300 min of ambient
vibration data were recorded, and 11 forced vibration tests (each between 3 and 6 min long) were performed. More details
about the instrumentations and dynamic test of the structure can be found in these studies [15,30].

3. System identification under different excitation levels

System identification is performed to extract the modal parameters (natural frequencies, mode shapes and damping
ratios) of the building using both ambient and forced vibration data. For ambient vibration, the measured acceleration data
are divided into 10-min long windows, and the Natural Excitation Technique [31] combined with Eigensystem Realization
Algorithm [32] (NExT-ERA) is used to estimate the modal parameters of the structure, resulting in a total of 30 datasets. Fig. 3
(a) shows a sample stabilization diagram and the power spectral density of SW-X channel on the roof for an ambient vibra-
tion dataset. For forced vibration, peak-picking in frequency-domain is employed to estimate the modal parameters using
the estimated transfer functions between different measurement channels and a reference channel [33]. The transfer func-
tions are estimated as the ratio of the cross-power spectral density of different acceleration channels with the reference
channel to the auto-power spectral density of the reference channel. The reference channel is selected as the channel of
the NW accelerometer on the 2nd floor in the same direction as the shaker excitation (X or Y). Fig. 3(b) shows a sample trans-
fer function between the NW-Y channel on the roof and the reference channel NW-Y on the 2nd floor for a forced vibration
test in Y direction. A total of 41 sets (30 from ambient vibration data and 11 from forced vibration data) of modal parameters
are identified and their statistics are reported in Table 1 for the first two modes. The corresponding two mode shapes are
shown in Fig. 4. Note that the average mode shapes are plotted here, which are defined as the arithmetic mean of all the
normalized mode shapes estimated from ambient vibration data. It can be seen that both modes include translational
and torsional movement, with mode 1 having larger motion in the X direction (west-east) and mode 2 in Y direction



Fig. 3. (a) Stabilization diagram and power spectral density of SW-X channel on roof for ambient vibration data; (b) Sample transfer function between NW-
Y channel on the roof and NW-Y channel on 2nd floor for a forced vibration test.

Table 1
The statistics summary of the identified modal parameters.

Natural frequency (Hz) MAC Damping ratio (%)

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

Ambient (n = 30) Mean 2.26 3.37 1.00 1.00 1.5 2.5
Std 0.01 0.04 0.002 0.002 0.3 0.4

Forced (n = 11) Mean 1.77 2.41 0.97 0.96 5.9 8.6
Std 0.10 0.16 0.019 0.011 1.1 1.2

Note: Std denotes standard deviation.

Fig. 4. Mode shapes of identified modes 1 and 2 (white, grey and black indicate roof, 2nd floor and 1st floor, respectively, and dashed rectangle presents the
undeformed floor positions).
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(south-north). The motion of first floor is negligible, the second floor has small motion, and the roof moves significantly lar-
ger than the lower floors for both vibration modes. This is due to the smaller lateral stiffness of the second story compared to
the first story. When using forced vibration data, the mode shape of mode 1 is identified more accurately when the shaker
excitation is in X direction, and similarly mode 2 is more accurately identified with shaker excitation in Y direction. This is
due to the interaction of modal response in one direction and the strong shaker excitation force in the other direction, and
has been reported in the thesis [30]. In this study, to keep a complete set of modal parameters (i.e., no missed identification),
the missing or less accurately identified mode shapes are replaced by the identified mode shapes with higher accuracy at the
closest vibration amplitude from other datasets. It is worth noting that while the natural frequencies show significant sen-
sitivity with respect to excitation amplitude, the variability of mode shapes is small.
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In Table 1, the reported modal assurance criterion (MAC) values are between the identified mode shapes and the average
mode shapes from ambient vibration data. It can be observed that the identified natural frequencies of both modes show a
significant drop between ambient and forced vibrations, which is much larger than the observed uncertainties in each type of
excitation as already reported in the study [30]. However, the identified mode shapes from ambient and forced vibrations are
very similar. An evident increase of the identified damping ratios for both modes can be seen from ambient to forced vibra-
tion. The decreasing trend of the natural frequencies can be observed in Fig. 5, in which the natural frequencies are plotted
against the vibration level of the structure. The vibration level is defined as the average of the root mean square (RMS) of the
acceleration time history measured by NW accelerometer on the roof in X and Y directions. This definition of the vibration
level is to represent overall vibration amplitude of the structure. From Fig. 5, it can be seen that the natural frequencies from
ambient vibration data are clustered together close to the vertical axis due to the small vibration amplitude (�1e-4). The
vibration levels for forced excitation tests are significantly larger due to the large capacity of the shaker (444.8 kN). Different
excitation forces are achieved by changing the mass setup of the shaker shaft and the input frequency. It can be seen that a
proximate linear relationship can be observed between natural frequencies and vibration levels, as denoted by the dashed
line in Fig. 5. The decreasing trend of natural frequencies with higher vibration level can be attributed to crack opening in
concrete and masonry with larger vibration amplitude. It is worth noting that this drop in natural frequencies is not perma-
nent (i.e., not due to damage) and is recovered after the shaker tests as the identified natural frequencies from ambient vibra-
tion data roughly remain unchanged before and after the shaking test, as reported by Yousefianmoghadam [30]. This
stiffness-amplitude dependence phenomenon has been observed and reported in several other studies [13,27,34].

4. Hierarchical Bayesian model updating

4.1. Formulation of updating framework with amplitude dependent parameters

Based on Fig. 5, the identified natural frequencies of both modes appear to follow a linear decreasing relationship with the
vibration level, which inspires the idea of formulating a stiffness-amplitude relationship within the hierarchical Bayesian
model updating. In this formulation, the stiffness of different structural components are considered as the updating stiffness
parameters h. The stiffness parameters are assumed to follow a normal distribution with their mean being a linear function
of vibration level and covariance matrix being constant, h � N lh;Rh

� �
, since no significant change is observed for the varia-

tion of natural frequencies at different vibration levels. The mean and covariance of stiffness parameters (lh and Rh) are
called stiffness hyperparameters. Based on the assumption, the mean and covariance matrix can be expressed as
lhðetÞ ¼ aþ bet ð1Þ
Fig. 5. Identified natural frequencies versus the vibration level.
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Rh ¼
. .
.

r2
hi

. .
.

2
6664

3
7775 ð2Þ
where vectors a and b represent the intercept and slope of the linear function. et is the vibration level during test t. The
covariance matrix Rh is assumed to be a diagonal matrix, i.e., the stiffness parameters are assumed to be independent. This
is a simplified and reasonable assumption if no evident correlation is observed between different structural components.
Note that the full covariance matrix can also be updated in this framework which would add to the computation burden.

Error function et is defined as the difference between the model-predicted modal parameters and their identified coun-
terparts, and is assumed to follow a zero-mean normal distribution Nð0;ReÞ, as shown in Eq. (3):
et ¼
ekt

eUt

� �
� Nð0;ReÞ ð3Þ
where ekt and eUt refer to eigen-frequency error and mode shape error, and are defined as
ektm ¼
~ktm � kmðhtÞ

kmðhtÞ ð4Þ

eUtm ¼
~Utm

~Utm

�� ��� atm
CUmðhtÞ
CUmðhtÞk k ð5Þ
where ht refers to the stiffness parameters during test t, and subscript m denotes the mode number. ~ktm ¼ ð2p~f tmÞ
2
is the

identified eigen-frequency and ~f tm is the identified natural frequency in Hz. ~Utm refers to the identified mode shape in dataset
t, while kmðhtÞ and UmðhtÞ are the model-predicted eigen-frequency and mode shape. C is the matrix that maps the corre-
sponding components of UmðhtÞ with ~Utm. atm is a scaling factor and defined as Eq. (6):
atm ¼
~UT

tmCUmðhtÞ
~Utm

�� �� CUmðhtÞk k ð6Þ
Note that the definition of mode shape error in Eq. (5) is adopted from Beck et al. [35] which represents projection of model-
predicted mode shape in the direction of measured mode shape. The mode shape error in Eq. (5) has been normalized to the
length of the identified mode shape ~Utm, providing comparable weights on different mode shape errors.

In this study, the effect of modeling errors and measurement noise is quantified approximately by fitting a normal dis-
tribution to the error function et . Note that the mean of the error function le is assumed to be zero in this study, i.e., no mod-
eling bias is considered. However, if strong modeling bias is observed in the updated model, a non-zero le can be considered
as presented in the study [36]. The covariance of the error function Re is assumed to be a diagonal matrix by ignoring the
correlations between different error function components (similar to Rh, the full matrix Re can also be potentially estimated),
as written in Eq. (7):
Re ¼
. .
.

r2
ej

. .
.

2
6664

3
7775 ð7Þ
Note that the assumption of a diagonal Re is realistic for many applications, however, in case that correlation exists among
error function components, the proposed hierarchical Bayesian approach is capable of estimating the full matrix Re which
would follow the similar formulation with an inverse Wishart prior distribution used. However, this would add to the com-
Fig. 6. Representation of the proposed hierarchical Bayesian framework.
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putation burden by increasing the number of updating parameters. In the current study, since the estimated values of Re are
relatively small, the influence of updating off-diagonal components of the error covariance matrix is expected to be small.

A diagram of the proposed hierarchical Bayesian framework is depicted in Fig. 6. Unlike the traditional Bayesian approach
which usually only estimates the structural stiffness, the hierarchical Bayesian framework estimates parameters of the prob-
ability distribution of stiffness (a, b and Rh) as hyperparameters, as well as covariance of error function Re. Based on the
Bayes’ theorem, posterior probability density function (PDF) of all updating parameters is proportional to the product of like-
lihood function and prior PDFs [37]:
p H;a;b;Rh;Re
~k; ~U; e
��� �

/
YNt

t¼1

p ~kt; ~Ut ht;a;b;Rh;Re; etj� �
p ht ;a;b;Rh;Re etjð Þ

/
YNt

t¼1

p ~kt; ~Ut ht;Rej� �
p ht ja;b;Rh; etð Þp að Þp bð Þp Rhð Þp Reð Þ

ð8Þ
in which, H, ~k, ~U and e denote the collections of stiffness vectors, identified eigen-frequencies, mode shapes and vibration
levels of all datasets available, respectively. Nt is the total number of datasets, which is equal to 41 as mentioned previously.
The prior PDFs of a, b, Rh and Re are assumed to be independent. Uniform distributions are used for a and b, and inverse� v2

distributions are chosen for r2
hi
and r2

ej
, as written below:
pðaÞ / 1 ð9Þ

pðbÞ / 1 ð10Þ

r2
hi
� Inverse� v2ðv1;r2

h0i
Þ ð11Þ

r2
ej
� Inverse� v2ðv2;r2

e0j
Þ ð12Þ
in which, v1;r2
h0i
, v2;r2

e0j
are parameters of the prior distributions. It is advised to choose and tune these parameters based on

specific applications as they can influence the posterior PDF. However, this influence will be reduced if more datasets are
used in the updating process. In this study, the following values are used after the tuning process: v1 ¼ 1, r2

h0i
¼ 0:052,

v2 ¼ 1 and r2
e0j

¼ 1e� 6. These prior PDFs are considered ‘‘conjugate priors”, and will simplify the mathematical derivation

of the joint posterior distribution [37].
After substituting the prior PDFs and the assumed likelihood functions into Eq. (8), the joint posterior distribution can

then be derived as:
p H;a;b;Rh;Re
~k; ~U; e
��� �

/ Rhj j�
Ntþv1þ2

2 Rej j�
Ntþv2þ2

2 exp
XNt

t¼1

�Jet � Jht
� ��XNp

i¼1

v1r2
h0i

2r2
hi

�
XNe

j¼1

v2r2
e0j

2r2
ej

" #
ð13Þ

Jet ¼
1
2
eT
t R

�1
e et ð14Þ

Jht ¼
1
2

ht � a� betð ÞTR�1
h ht � a� betð Þ ð15Þ
where Np denotes the number of stiffness components in ht , Ne is the dimension of error function et and equal to ð1þ NsÞNm,
and Nm and Ns are number of identified modes and number of components in the identified mode shapes (number of sen-
sors), respectively.

4.2. A two-step sampling approach to evaluate joint posterior distribution

The derived joint posterior PDF in Eq. (13) is only known up to a normalizing constant and is prohibitively difficult to
solve analytically. The stochastic sampling method, Gibbs sampler [38], has been shown to be efficient to evaluate Eq.
(13) numerically. Gibbs sampler requires the derivation of the conditional posterior PDFs for each of the updating parame-
ters, which have been derived and presented below:
pðhtj�Þ / expð�Jet � Jht Þ ð16Þ
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pðaj�Þ ¼ N
1
Nt

XNt

t¼1

ðht � betÞ; 1Nt
Rh

 !
ð17Þ
pðbj�Þ / exp �
XNt

t

Jht

 !
ð18Þ
pðr2
hi
j�Þ ¼ Inverse� v2 v1 þ Nt;

v1r2
h0i

þ NtSi
v1 þ Nt

 !
ð19Þ
pðr2
ej
j�Þ ¼ Inverse� v2 v2 þ Nt;

v2r2
e0j

þ NtVj

v2 þ Nt

 !
ð20Þ
Si ¼ 1
Nt

XNt

t¼1

hti � ai � biet
� �2 ð21Þ
Vj ¼ 1
Nt

XNt

t¼1

e2tj ð22Þ
in p ht �jð Þ which denotes the conditional posterior PDF of ht given all other updating parameters. Note that,

p aj�ð Þ; p r2
hi
�j

� 	
andp r2

ej
�j

� 	
are standard distributions and therefore can be sampled easily. p ht �jð Þandp b �jð Þ are only known

up to a normalizing constant and need Markov Chain Monte Carlo (MCMC) methods to sample. Metropolis-Hastings
(MH) algorithm [39,40] is chosen for sampling these two marginal distributions and the whole sampling approach is referred
to as the MH within Gibbs sampling method.

Gibbs method samples the updating parameters one by one in a loop, and a complete loop generates one sample for all
the updating parameters. Furthermore, this is often a high-dimensional problem and requires a large number of samples to
converge. Therefore, it is computationally prohibitive to directly use the proposed MH within Gibbs sampling approach to
generate an adequate number of samples to provide accurate statistics of the updating parameters, e.g., maximum a poste-
riori (MAP), mean and standard deviation. Instead, a simplified approach for MAP estimations is proposed here [29]. This
approach is described below:

(1) Initial guess for MAP estimates: 0â; 0b̂; 0R̂h;
0R̂e

(2) At iteration k
(a) Compute kĥt given k�1â; k�1b̂; k�1R̂h;
k�1R̂e
kĥt ¼ argmin
ht

Jet þ Jht
� � ð23Þ
(b) Compute MAP of a and b given kĥt; k�1R̂h
kâ; kb̂
� 	

¼ argmin
a;b

XNt

t¼1

Jht

 !
ð24Þ
(c) Find MAP of Rh;Re
kr̂2
hi
¼ v1r2

h0i
þ NtSi

v1 þ Nt þ 2
ð25Þ
kr̂2
ej
¼
v2r2

e0j
þ NtVj

v2 þ Nt þ 2
ð26Þ
(3) Repeat step (2) until convergence criteria is reached

This simplified approach is adequate to find the MAPs of the updating parameters. However, in order to estimate the
parameters’ uncertainties, the standard MH within Gibbs sampler can be employed by using the estimated MAPs as the
starting point to reach faster convergence of sampled parameters. This two-step sampling approach is capable of providing
MAPs and estimation uncertainty of the updating parameters with less computation effort.
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5. Application to the two-story RC building

5.1. Initial FE model

A linear FE model of the structure is built in the open-source FE analysis software OpenSees [41]. OpenSees is convenient
for model updating applications as it is computationally efficient in analysis and flexible to be linked to other programs such
as Matlab where the sampling is performed. A lidar scanner was used to collect and create the point cloud of the building
[15], and the geometry of the model is estimated from the lidar data. Concrete and masonry samples were extracted from the
building for columns, slabs and walls, and then sent to University of California San Diego Structural Engineering Powell Lab-
oratory for material property test [30]. Young’s modulus of columns and masonry walls in the initial model are based on the
lab test results of the extracted samples. The RC frames of the structure are modeled using linear elastic beam-column ele-
ments. The floor slabs are assumed to be rigid in-plane based on the fact that the slabs are strong in-plane due to its geom-
etry and material properties. This assumption is checked using the mode shape components (10 channels) on each floor and
the corresponding shapes using a fitted least-squares rigid body motion. The assumption is found to be reasonable in the
view of identification errors. The masonry walls of the building are modeled as diagonal struts, with their cross-section
and stiffness estimated based on FEMA 356 [42]. The equivalent struts have the same thickness and Young’s modulus as
the masonry wall, and their widths are estimated from:
Table 2
MAPs o

ðh1Þ
ðh2Þ
ðh3Þ
ðh4Þ
ðh5Þ
a ¼ 0:175 klhcolð Þ�0:4rinf ð27Þ
where kl denotes the coefficient of strut width which is determined by the geometry and stiffness of the infills and frames,
hcol is the height of side columns, and rinf refers to the diagonal length of the infill panel. The foundation of the building is
modeled as fixed and soil-structure interaction is not considered. The structural mass is estimated based on the densities of
extracted samples and the geometry from lidar data and is assigned as lumped mass at the nodes of the FE model. This linear
FE model is considered as the initial model in the hierarchical Bayesian model updating framework with the stiffness of con-
sidered substructures varying as a function of the vibration level.
5.2. Model updating results

The proposed hierarchical Bayesian model updating approach is applied using the available 41 datasets of identified
modal parameters at different excitation amplitudes. Based on the sensitivity study performed, five stiffness parameters

are selected for updating with each representing a substructure of the building, h ¼ h1; � � � ; h5½ �T . The stiffness parameters
are defined as the normalized Young’s modulus hi ¼ Ei=E

0
i . Ei denotes the Young’s modulus of substructure i and E0

i is the
initial value. The five substructures include: all the infill walls at the west side of the 2nd story (h1), east walls of the 2nd
story (h2), north walls of the 2nd story (h3), south walls of the 2nd story (h4), and all walls of the 1st story and all columns
(h5). Note that initial damage and evident cracks were observed in the infill walls of the second story and therefore four of the
updating parameters are selected at this story to characterize the uncertain stiffness of damaged infills.

The estimated MAP values of hyperparameters and covariance of error function using the simplified approach are sum-
marized in Table 2. Note that the reported r̂e for mode shapes 1 (U1) and 2 (U2) refer to the average values over all mode
shape components. â can be interpreted as the mean of the stiffness parameters at zero vibration level. It can be observed
that there is a large discrepancy among values of â for different substructures which is due to the different levels of existing
damage in the building. Evident cracks were observed in the west (h1), north (h3) and south walls (h4) of the 2nd story, cor-
responding to the small values of â. The fact that the values of â (h1, h3) are close to zero indicates the west and north walls of
2nd story are severely damaged and barely provide any stiffness. These values are consistent with the observed damage at
the 2nd story of the building [15]. The east walls of 2nd story (h2) are relatively intact, so â (h2) is close to 1. â (h5) shows a
significant increase which means the stiffness of columns and walls of the 1st story were underestimated in the initial FE
model, probably due to the effects of modeling errors such as use of diagonal struts for masonry walls. The estimated com-

ponents of b̂ are negative indicating that the stiffness of all substructures decrease with higher vibration level, which is con-
sistent with the observed decreasing trend of natural frequencies in Fig. 5. The decreasing trend of natural frequencies with
high vibration level is due to the crack opening/closing of the building. This linear decreasing trend is accounted for and
f updating parameters from simplified approach.

â b̂ r̂h r̂eð%Þ

0.11 �2.41 0.011 ðk1Þ 0.02
0.85 �4.68 0.008 ðk2Þ 0.98
0.08 �0.44 0.010 ðU1Þ 1.32
0.40 �4.91 0.017 ðU2Þ 1.98
1.82 �22.66 0.065
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quantified by the parameter b̂. It can be observed that the value of b̂ for h5 is much larger than that of h1 to h4. This can be due
to the fact that h5 contains the least damaged components of the structure and its stiffness can be affected more significantly

from crack openings than other already severely damaged substructures. Note that the values of â and b̂ are only valid and
meaningful within the range of observed vibration levels, i.e., 0–0.045 m/s2 and the assumed linear function of lh should not
be extrapolated for much larger amplitudes since that may result in negative structural stiffness. The uncertainties in the
updated stiffness parameters are quantified by r̂h, with the largest uncertainty estimated for h5, however the estimated
uncertainties are relatively small compared to the values of â. From the table, it is also seen that the error functions have
small uncertainties (r̂e), with relatively larger standard deviations for mode 2 (both in eigen-frequency and mode shape).

Using the proposed two-step sampling approach, samples of the updating parameters are generated using the MH within
Gibbs sampler after the MAPs are estimated. 1000 samples are generated and histograms of the samples for ai, bi and rhi are
shown in Fig. 7. Note that some of the stiffness components (especially h1) get close to zero at high vibration levels. There-
fore, to avoid having negative stiffness and instability, all stiffness samples are truncated to be positive. Although this trun-
cation would violate the normal distribution assumption, negative stiffness is only obtained at very high vibration levels and
only for h1, therefore its effect is negligible. Alternatively, other distribution models can be used to avoid this issue. From
Fig. 7, it can be seen that samples of ai and bi approximately follow a normal distribution. Samples of rhi seem to follow
the Inverse� v2 distribution with a tail on the right side due to the conjugate priors used. Overall, the uncertainties of all
hyperparameters are small and these uncertainties decrease as more informative datasets are considered. While the estima-
tion uncertainties of hyperparameter can be reduced by feeding more measured data into the framework, the MAP values
tend to stay constant and will not be affected by using more data (once adequate data is available). Therefore, the estimated
uncertainties of structural stiffness and modeling errors will not change significantly by increasing the amount of data in the
implemented framework. On the contrary, such estimation uncertainties of structural stiffness will not converge and will
consistently decrease with the addition of data in the traditional Bayesian inference formulation [29].
5.3. Probabilistic response prediction

5.3.1. Modal parameter prediction
Using the updated model, response or response features of the building such as its modal parameters can be predicted at

different levels of vibration amplitude. The predicted modal parameters can be used to verify the accuracy and performance
of the proposed hierarchical Bayesian framework. Model-predicted modal parameters can be evaluated by transforming the
definition of error function in Eqs. (4) and (5) into the following:
Fig. 7. Histograms of 1000 samples of hyperparameters generated using MH within Gibbs.
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kpretm ¼ kmðhtÞ þ kmðhtÞektm ð28Þ
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ð29Þ
in which stiffness parameters ht follow the normal distribution ht � Nðâþ b̂et ; R̂hÞ. ektm and eUtm denote the corresponding
eigen-frequency error and mode shape error which follow the assumed zero-mean Gaussian distribution et � Nð0; R̂eÞ. Note
that the predicted mode shapes Upre

tm are approximated solutions as the original error function is implicit with respect to ~Utm

(due to atm). However, the approximation error should be negligible as the covariance matrix of error function is relatively
small.

A total of 1000 samples of natural frequencies are predicted for the first two modes with vibration levels uniformly dis-
tributed in the range of test data. The predictions are compared with the identified natural frequencies in Fig. 8. It can be
seen that the predictions follow the decreasing trend and cover the scattering range of the identified values very well. Both
point clouds (gray circles and black dots) show similar uncertainties along the range of vibration level. Note that the drop in
identified natural frequencies are most likely caused by crack openings in the building, and this phenomenon is correctly
reproduced by the assumed function between stiffness and vibration level using the linear FE model. This demonstrates
the effectiveness of the proposed hierarchical Bayesian framework to capture and reproduce the observed characteristics
of modal parameters.

5.3.2. Time history response prediction
Accurate prediction of the dynamic time history response is one of the major goals of modeling and model updating of

structural systems and is critical for evaluating structural performance under future loading. In this section, displacement
and acceleration time histories of the building are predicted when subjected to a shaker excitation using the probabilistically
calibrated model. The dynamic responses are estimated through modal superposition considering only the first two modes.

The equation of motion in modal coordinates [33] can be expressed as:
€qmðtÞ þ 2fmxm _qmðtÞ þx2
mqmðtÞ ¼

PmðtÞ
Mm

ð30Þ
in which qmðtÞ is the modal displacement response at time t for modem. fm is the damping ratio,xm is the natural frequency
in rad/s, xm ¼

ffiffiffiffiffiffiffiffi
kpretm

p
. PmðtÞ is the generalized force with PmðtÞ ¼ UT

mpðtÞ where pðtÞ is the input force vector. Mm is the gen-
eralized mass, Mm ¼ UT

mMUm. Once the modal response is predicted, it can be transformed into physical coordinates using
the model-predicted mode shapes:
Fig. 8. Comparison of 1000 natural frequency predictions and their identified counterparts.
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The velocity and acceleration responses can be estimated in a similar manner by replacing qm with _qm or €qm in Eq. (31).
Note that the predicted mode shapes only contain components at the location of available sensors, therefore this formulation
only provides predictions at degrees-of-freedom (DOFs) with available measurements. However, the error function can be
expanded to provide predictions at all DOFs of the model. Two approaches can be used for expanding the error function:
(1) using the largest components of r̂ej for the unmeasured DOFs as it is done in the study [36] (this is a conservative
approach), or (2) using r̂ej of the closest measured DOF for unmeasured DOFs.

The acceleration response time history of the building is predicted when the building is subjected to a sine sweep exci-
tation in Y direction. The input force of the shaker is not measured directly but it is estimated based on the excitation fre-
quency measurement and the weight of the shaker [43]:
uðtÞ ¼ AðtÞ sin uðtÞð Þ ð32Þ

In Eq. (32), AðtÞ is the shaker instant force and AðtÞ ¼ 2MR 2pf tð Þð Þ2.MR denote the eccentricity which is the product of the

eccentric mass and the distance between center of mass and center of shaft, and is equal to 652.38 kg-m. f ðtÞ is the measured
instant input frequency in Hz and is shown in Fig. 9(a). uðtÞ is the phase of the shaker which can be evaluated through:
uðtÞ ¼ u0 þ
Z t

0
2pf ðtÞdt ð33Þ
in which u0 is the initial phase of the shaft, and is estimated as �p=4 using the measured response at channel NW-X. The
estimated shaker input force is shown in Fig. 9(b).

In the formulated hierarchical Bayesian framework, the mean of stiffness parameters lhðetÞ depend on the vibration level
et . The vibration level et can be estimated based on the excitation force using the transfer function of the calibrated model.
The vibration level for the considered sine sweep excitation is evaluated to be 0.039 m/s2 from the measured data. Damping
is another factor that affects the time history response predictions. To account for the uncertainties of modal damping, the
damping ratios are assumed to follow a normal distribution with mean and standard deviation the same as those identified

from forced vibration tests (see Table 1), f1ð%Þ � N 5:9;1:12
� 	

and f2ð%Þ � N 8:6;1:22
� 	

. Note that although the identified

damping ratios of the first two modes increase significantly for forced vibrations, they do not follow a clear trend. Further-
more, the identified damping ratios usually have larger estimation uncertainty than the natural frequencies. Thus, account-
ing for the relationship between damping and amplitude is considered outside the scope of this study. This provides more
conservative confidence intervals for the predictions.

A total of 100 independent acceleration response time history predictions are generated considering uncertainties of stiff-
ness, error function and damping ratios. A 95% confidence interval of the time history predictions is estimated by: (1) sorting
the 100 predictions at each time instant in an increasing order; (2) selecting the 4th and 98th values as the lower and upper
bounds of the interval. Thus, the bounds do not correspond to complete individual realizations of response at tail values of
parameters. The comparison between predicted acceleration time histories and the measured data for the sensors on the roof
is shown in Fig. 10. It can be seen that the predictions have a good agreement with the measured data and measurements fall
within the 95% confidence intervals. The predictions are capable of predicting the peaks of the measured data very well, with
the peak amplitude slightly larger than the measured data due to the uncertainties considered in the predictions. The con-
fidence bounds for some channels are tighter than others, e.g., bounds for channels NW-X and NE-X are tighter than channel
NE-Y and SW-Y. However, some discrepancies can be observed, e.g., the central peak of NW-X measured data around 120 s
Fig. 9. (a) Shaker excitation frequency; (b) Estimated shaker input force.



Fig. 10. Comparison of predicted acceleration time histories and measured data for sensors on the roof (light pink area refers to 95% confidence interval and
black line denotes the measured data). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 11. Zoom-in plot (89–91 s for top two graphs, and 158–160 s for bottom two graphs) of the acceleration comparison for channels NW-X and NE-X (light
pink area refers to 95% confidence interval, dashed line refers to the median of predictions, and black line denotes the measured data). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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which is due to the fact that in the implemented framework, a constant vibration level is defined for the whole sine sweep
shaker test while the excitation amplitude (and therefore the natural frequency) varies continuously during the test. The
zoom-in plot of the comparison for the peak amplitude between 89–91 s and 158–160 s for channels NW-X and NE-X is
shown in Fig. 11. It can be observed that the measured data falls within the light pink area which represents the 95% con-



Fig. 12. Comparison of predicted acceleration time histories using ambient vibration level and the measured data for sensors on the roof (light pink area
refers to 95% confidence interval and black line denotes the measured data). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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fidence interval for window 89–91 s (top two graphs in Fig. 11), but there is a small time offset between measured and pre-
dictions for window 158–160 s (bottom two graphs in Fig. 11) which is due to the fact that a small change in natural fre-
quency would accumulate the phase shift of the response. However, response amplitude is always within the prediction
interval if the time shift is corrected. The predictions can be improved by allowing the stiffness to change continuously with
the vibration level in a single excitation test which would demand a higher computational cost but it is feasible to do so.

To underline the importance of accounting for vibration amplitude in model updating and response prediction, the time
history response are predicted again from the calibrated model without considering the stiffness-amplitude dependence, i.e.,
the calibrated model at ambient vibration level is used for predicting response to the same shaker excitation. The same
modal superposition procedure and damping ratio distributions are applied. Similar comparison of predicted acceleration
time histories with the measured data for the roof sensors is shown in Fig. 12. It can be seen that the model cannot predict
the peaks of the measured data and the confidence bounds do not contain the measurements. This demonstrates that for the
considered damaged building, a model calibrated using ambient data is not suitable for predicting the structural response at
higher vibration level. It also highlights the capability of a hierarchical Bayesian framework for considering and modeling
different sources of uncertainty/variability such as the stiffness versus excitation amplitude.
6. Summary and conclusions

This paper presents a hierarchical Bayesian model updating framework which accounts for the effects of excitation ampli-
tude on structural stiffness. The approach has been implemented for model calibration and dynamic response prediction of a
two-story RC building that was severely damaged due to past earthquakes. Modal parameters of the structure are identified
using both ambient and forced vibration data, and the identified natural frequencies are observed to decrease significantly at
higher vibration level. The hierarchical Bayesian model updating approach is applied to estimate the stiffness parameters of
five considered substructures, stiffness hyperparameters (mean and covariance of stiffness parameters), as well as modeling
errors. To account for stiffness-amplitude dependence, stiffness mean is assumed to have a linear relationship with the
vibration level, and stiffness covariance is assumed to be constant. The joint posterior PDF of all updating parameters (stiff-
ness parameters, stiffness mean which is a function of vibration level, stiffness covariance, and covariance of error function)
is derived from likelihood functions and prior PDFs given measured data. A two-step sampling approach is proposed to first
compute the MAPs of the updating parameters, and then evaluate their estimation uncertainties using MH within Gibbs
sampler. Time history responses of the building are finally predicted when the building is subjected to a high amplitude
sine-sweep shaker excitation and compared with the measured data.
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The proposed hierarchical Bayesian model updating framework has successfully provided the following results:

(I) Most probable values and estimation uncertainties of all updating parameters: the MAPs of all updating parameters and
their estimation uncertainties are successfully estimated through the proposed two-step sampling approach, includ-
ing effective stiffness in each dataset, stiffness mean (as a function of vibration level) and covariance, and covariance of
error function. Based on the MAP results, stiffness of the west, north and south walls of 2nd story need to be reduced
significantly, indicating the extent of damage at these locations.

(II) Inherent uncertainty of stiffness parameters: the inherent uncertainty of stiffness parameters due to ambient and envi-
ronmental conditions such as changing temperature and wind excitation is quantified by the stiffness hyperparame-
ters (stiffness mean and covariance). While the estimation uncertainties of hyperparameter can be reduced by feeding
more data into the framework, the MAP values such as the stiffness covariance converge. Such convergence cannot be
achieved in alternative Bayesian inference formulations.

(III) Modeling errors estimation: modeling errors are approximately quantified through the assumed normal distribution of
error function which is characterized by its mean and covariance (no modeling bias is considered, but could be esti-
mated in this framework as shown in the study [36]), which are then considered and propagated in the natural fre-
quency and time history response predictions.

(IV) Stiffness versus excitation amplitude relationship within the updating framework: the proposed framework provides the
MAPs and estimation uncertainties of the considered underlying relationship between stiffness mean and vibration
level. Accounting for this major source of variability in the dynamic behavior of the building reduces the uncertainty
of stiffness parameters (a much larger stiffness covariance will be estimated if the stiffness-amplitude relationship is
removed), and therefore provides tighter confidence bounds for time history response predictions.
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